Package 'ethnobotanyR'

Title: Calculate Quantitative Ethnobotany Indices
Description: An implementation of the quantitative ethnobotany indices in R. The goal is to provide an easy-to-use platform for ethnobotanists to assess the cultural significance of plant species based on informant consensus. The package closely follows the paper by Tardio and Pardo-de-Santayana (2008). Tardio, J., and M. Pardo-de-Santayana, 2008. Cultural Importance Indices: A Comparative Analysis Based on the Useful Wild Plants of Southern Cantabria (Northern Spain) 1. Economic Botany, 62(1), 24-39. <doi:10.1007/s12231-007-9004-5>.
Authors: Cory Whitney [aut, cre]
Maintainer: Cory Whitney <[email protected]>
License: GPL
Version: 0.1.9
Built: 2024-11-19 04:10:32 UTC
Source: https://github.com/cwwhitney/ethnobotanyr

Help Index


Cultural Importance index (CI)

Description

Calculates the Cultural Importance Index (CI) per species.

Usage

CIs(data)

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of species names respectively. The rest of the columns are the identified ethnobotany use categories. The data should be populated with counts of uses per informant (should be 0 or 1 values).

Value

Data frame of species and Cultural Importance Index (CI) values.

Warning

Identification for informants and species must be listed by the names 'informant' and 'sp_name' respectively in the data set. The rest of the columns should all represent separate identified ethnobotany use categories. These data should be populated with counts of uses per informant (should be 0 or 1 values).

References

Tardio, Javier, and Manuel Pardo-de-Santayana. 2008. “Cultural Importance Indices: A Comparative Analysis Based on the Useful Wild Plants of Southern Cantabria (Northern Spain) 1.” Economic Botany 62 (1): 24–39.

Whitney, C. W., Bahati, J., and Gebauer, J. (2018), Ethnobotany and agrobiodiversity; valuation of plants in the homegardens of southwestern Uganda. Ethnobiology Letters, 9(2), 90-100. doi:10.14237/ebl.9.2.2018.503

Examples

#Use built-in ethnobotany data example
CIs(ethnobotanydata)

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant <- sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name <- sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)

CIs(eb_data)

Cultural Value of ethnospecies (CVe)

Description

Calculates the Cultural Value (CVe) per ethnospecies.

Usage

CVe(data)

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of ethnospecies names respectively.

Value

Data frame of ethnospecies and Cultural Value (CVe) values.

Warning

Identification for informants and ethnospecies must be listed by the names 'informant' and 'sp_name' respectively in the data set. The rest of the columns should all represent separate identified ethnobotany use categories. These data should be populated with counts of uses per informant (should be 0 or 1 values).

References

Reyes-Garcia, V., T. Huanca, V. Vadez, and W. Leonard. 2006. “Cultural, Practical, and Economic Value of Wild Plants: A Quantitative Study in the Bolivian Amazon.” Economic Botany.

Examples

#Use built-in ethnobotany data example
CVe(ethnobotanydata)

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")
eb_data$informant <- sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name <- sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)

CVe(eb_data)

Alluvial plot of ethnobotany uses and species

Description

Creates a simple alluvial plot of species and uses for ethnobotany studies.

Usage

ethno_alluvial(data, alpha = 0, colors = NULL)

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of species names respectively. The rest of the columns are the identified ethnobotany use categories. The data should be populated with counts of uses per person (should be 0 or 1 values).

alpha

is a number between 0 and 1 for the level of transparency behind the labels on the strata (default is 0).

colors

is the color palette to be used for the fill of the bars. The default is from the rainbow palette with the number of plants in the data

Value

Alluvial diagram showing all use reports for each use (center) related to each species (left) and informant (right) in the data set.

Warning

Identification for informants and species must be listed by the names 'informant' and 'sp_name' respectively in the data set. The rest of the columns represent the identified ethnobotany use categories. These data should be populated with counts of uses per person (should be 0 or 1 values).

References

Mon, Aye Mya, Yinxian Shi, Xuefei Yang, Pyae Phyo Hein, Thaung Naing Oo, Cory Whitney, and Yongping Yang. “The Uses of Fig (Ficus) by Five Ethnic Minority Communities in Southern Shan State, Myanmar.” Journal of Ethnobiology and Ethnomedicine 16, no. 5 (2020). doi:10.1186/s13002-020-00406-z

Examples

#Use built-in ethnobotany data example
ethno_alluvial(ethnobotanydata)

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant <- sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name <- sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)

# Default plot ####

ethno_alluvial(eb_data)

Gives a measure of the confidence we can have in the answers in the ethnobotany data.

Description

Determine the probability that informant citations for a given use are 'correct' given informant responses to the use category for each plant, an estimate of each person's prior_for_answers with this plant and use, and the number of possible answers about this plant use.

Usage

ethno_bayes_consensus(data, answers = 2, prior_for_answers, prior = -1)

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of species names respectively. The rest of the columns are the identified ethnobotany use categories. The data should be populated with counts of uses per person (should be 0 or 1 values).

answers

The number of answers available for each question. These are set to '2' because the way the package works at the moment users can have either a '1' or a '0' in the table. It is however, possible to have more.

prior_for_answers

A matrix representing the probability of a given use being more likely. If not provided the function assumes a uniform distribution across uses.

prior

a prior distribution of probabilities over all answers as a matrix. If this is not provided the function assumes a uniform distribution (prior = -1).

Value

A matrix, where columns represent plant use categories and rows represent responses per person and plant (matching the data). Each value represents the bayes_consensus that an answer was 'correct' for a particular use, within the cultural consensus framework.

Warning

Identification for informants and species must be listed by the names 'informant' and 'sp_name' respectively in the data set. The rest of the columns should all represent separate identified ethnobotany use categories. These data should be populated with counts of uses per informant (should be 0 or 1 values).

Application

ethnobotanyR users often have a large number of counts in cells of the data set after categorization (i.e one user cites ten different ‘food’ uses but this is just one category). Most quantitative ethnobotany tools are not equipped for cases where the theoretical maximum number of use reports in one category, for one species by one informant is >1. This function and the bayes_boot function may be useful to work with these richer datasets for the Bayes consensus analysis.

References

Oravecz, Z., Vandekerckhove, J., & Batchelder, W. H. (2014). Bayesian Cultural Consensus Theory. Field Methods, 1525822X13520280. doi:10.1177/1525822X13520280

Romney, A. K., Weller, S. C., & Batchelder, W. H. (1986). Culture as Consensus: A Theory of Culture and Informant Accuracy. American Anthropologist, 88(2), 313-338.

Alastair Jamieson Lane and Benjamin Grant Purzycki (2016), AnthroTools: Some custom tools for anthropology.

Examples

#Use built-in ethnobotany data example
#assign a non-informative prior to prior_for_answers with 'prior_for_answers=0.5'
ethno_bayes_consensus(ethnobotanydata, answers = 2, prior_for_answers = 0.5, prior = -1)

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant <- sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name <- sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)

#assign a non-informative prior to prior_for_answers
eb_prior_for_answers <- rep(0.5, len = nrow(eb_data))

ethno_bayes_consensus(eb_data, answers = 5, prior_for_answers = eb_prior_for_answers)

Bootstrap analyses of ethnobotany indices

Description

Creates a non-parametric bootstrap as a Bayesian Model https://www.sumsar.net/blog/2015/04/the-non-parametric-bootstrap-as-a-bayesian-model/. This is meant to be applied for ethnobotany data and indices in the ethnobotanyR package. Performs a Bayesian bootstrap and returns a sample of size 'n1' representing the posterior distribution of the chosen statistic (i.e. 'mean'). The function returns a vector if the statistic is one-dimensional (like for mean(...)) or a data.frame if the statistic is multi-dimensional (like for the coefficients 'coefs.' of a regression model 'lm').

Usage

ethno_boot(data, statistic, n1 = 1000, 
n2 = 1000, ...)

Arguments

data

Can be either a vector, matrix or a data.frame.

statistic

A function that accepts data as its first argument. Should return a numeric vector.

n1

The size of the bootstrap sample.

n2

The sample size used to calculate the statistic for each bootstrap draw.

...

Further arguments passed on to the statistic function.

Value

Bayesian bootstrap of chosen ethnobotany indices in ethnobotanyR package.

Application

This function was inspired by Rasmus Bååth's “The Non-Parametric Bootstrap as a Bayesian Model” Publishable Stuff, 2015. https://www.sumsar.net/blog/2015/04/the-non-parametric-bootstrap-as-a-bayesian-model/. In order to understand the various possible applications of this function for ethnobotany analyses it is important to read through that work.

ethnobotanyR users often have a large number of counts in cells of the data set after categorization (i.e one user cites ten different ‘food’ uses but this is just one category). Most quantitative ethnobotany tools are not equipped for cases where the theoretical maximum number of use reports in one category, for one species by one informant is >1. This function and the ethno_bayes_consensus function may be useful to work with these richer datasets for the Bayes consensus analysis.

References

Bååth, Rasmus. “The Non-Parametric Bootstrap as a Bayesian Model” Publishable Stuff, 2015. https://www.sumsar.net/blog/2015/04/the-non-parametric-bootstrap-as-a-bayesian-model/. Rubin, Donald B. “The Bayesian Bootstrap.” Annals of Statistics 9, no. 1 (January 1981): 130–34. doi:10.1214/aos/1176345338.

Examples

#Use built-in ethnobotany data example

ethno_boot(data = ethnobotanydata$Use_1, 
statistic = mean, n1 = 1000)

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant<-sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name<-sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)

# Simple Bayesian bootstrap of the mean ####

boot_dataUR <- URs(eb_data)

ethno_boot(data = boot_dataUR$URs, statistic = mean)

# Generate random dataset of three informants with multiple uses for four species

eb_multi_use_data <- data.frame(replicate(10,sample(0:10,20,rep=TRUE)))
names(eb_multi_use_data) <- gsub(x = names(eb_multi_use_data), pattern = "X", replacement = "Use_")  
eb_multi_use_data$informant<-sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_multi_use_data$sp_name<-sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)

# Simple Bayesian bootstrap of the mean of Use_1 ####

ethno_boot(data = eb_multi_use_data$Use_1, statistic = mean)

Ethnobotany data set.

Description

An ethnobotany dataset from 20 informants, four species and 10 uses column 1 'informant' lists the names or id's of knowledge holders column 2 'sp_name' lists the names or id's of species The other 10 columns are the identified ethnobotany use categories. The data is populated with counts of uses per person (0 and 1 values).

Usage

ethnobotanydata

Format

A data frame with 80 rows and 12 variables:

informant

anonymized id's of 20 knowledge holders

sp_name

id's of four species

Use_1

one of the categorized uses of species, 0 and 1 values

Use_2

one of the categorized uses of species, 0 and 1 values

Use_3

one of the categorized uses of species, 0 and 1 values

Use_4

one of the categorized uses of species, 0 and 1 values

Use_5

one of the categorized uses of species, 0 and 1 values

Use_6

one of the categorized uses of species, 0 and 1 values

Use_7

one of the categorized uses of species, 0 and 1 values

Use_8

one of the categorized uses of species, 0 and 1 values

Use_9

one of the categorized uses of species, 0 and 1 values

Use_10

one of the categorized uses of species, 0 and 1 values

...


Chord diagram of ethnobotany uses and species

Description

Creates a simple chord diagram of species and uses for ethnobotany studies. For more on the circlize package see Zuguang Gu's 'Circular Visualization in R' https://jokergoo.github.io/circlize_book/book/

Usage

ethnoChord(data, by)

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of species names respectively. The rest of the columns are the identified ethnobotany use categories. The data should be populated with counts of uses per person (should be 0 or 1 values).

by

indicates the variable that should be mapped to the bottom of the chord diagram. This automatically defaults to the column referring to the species (by = "sp_name")

Value

Chord diagram figure for each use by 'informant' (top half) related to each 'sp_name' (bottom half) in the data set. To change variable names try using the dplyr rename function.

Warning

Identification for informants and species must be listed by the names 'informant' and 'sp_name' respectively in the data set. The rest of the columns represent the identified ethnobotany use categories. These data should be populated with counts of uses per person (should be 0 or 1 values).

References

Gu, Zuguang, Lei Gu, Roland Eils, Matthias Schlesner, and Benedikt Brors. “Circlize Implements and Enhances Circular Visualization in R.” Bioinformatics, 2014, 393.

Whitney, C. W., Bahati, J., and Gebauer, J. (2018), Ethnobotany and agrobiodiversity; valuation of plants in the homegardens of southwestern Uganda. Ethnobiology Letters, 9(2), 90-100. doi:10.14237/ebl.9.2.2018.503

Examples

#Use built-in ethnobotany data example
ethnoChord(ethnobotanydata, by = "informant")

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant <- sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name <- sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)

ethnoChord(eb_data, by = "informant")

Frequency of Citation (FC)

Description

Calculates the frequency of citation (FC) per species.

Usage

FCs(data)

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of species names respectively. The rest of the columns are the identified ethnobotany use categories. The data should be populated with counts of uses per person (should be 0 or 1 values).

Value

Data frame of species and frequency of citation (FC) values.

References

Prance, G. T., W. Balee, B. M. Boom, and R. L. Carneiro. 1987. “Quantitative Ethnobotany and the Case for Conservation in Amazonia.” Conservation Biology 1 (4): 296–310.

Examples

#Use built-in ethnobotany data example
FCs(ethnobotanydata)

#Generate random dataset of three informants uses for four species
eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant<-sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name<-sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)
FCs(eb_data)

Fidelity Level (FL)

Description

Calculates the fidelity level (FL) of the various uses of a species, i.e. the ratio between the number of informants who independently cite the use of a species for the same purposes (Ns * 100) and the total number of informants who mentioned the plant for any use (FCs).

Usage

FLs(data)

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of species names respectively. The rest of the columns are the identified ethnobotany use categories. The data should be populated with counts of uses per person (should be 0 or 1 values).

Value

Data frame of species and fidelity level (FL) values.

Warning

Identification for informants and species must be listed by the names 'informant' and 'sp_name' respectively in the data set. The rest of the columns should all represent separate identified ethnobotany use categories. These data should be populated with counts of uses per informant (should be 0 or 1 values).

References

Friedman, J., Z. Yaniv, A. Dafni, and D. Palewitch. 1986. “A Preliminary Classification of the Healing Potential of Medicinal Plants, Based on a Rational Analysis of an Ethnopharmacological Field Survey Among Bedouins in the Negev Desert, Israel.” Journal of Ethnopharmacology 16 (2-3): 275–87.

Examples

#Use built-in ethnobotany data example
FLs(ethnobotanydata)
#returns the primary use category (Primary.use) and the FLs value

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant <- sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name <- sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)

FLs(eb_data)

Number of Uses (NU)

Description

Calculates the number of uses (NU) per species.

Usage

NUs(data)

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of species names respectively. The rest of the columns are the identified ethnobotany use categories. The data should be populated with counts of uses per person (should be 0 or 1 values).

Value

Data frame of species and number of uses (NU) values.

Warning

Identification for informants and species must be listed by the names 'informant' and 'sp_name' respectively in the data set. The rest of the columns should all represent separate identified ethnobotany use categories. These data should be populated with counts of uses per informant (should be 0 or 1 values).

References

Prance, G. T., W. Balee, B. M. Boom, and R. L. Carneiro. 1987. “Quantitative Ethnobotany and the Case for Conservation in Amazonia.” Conservation Biology 1 (4): 296–310.

Examples

#Use built-in ethnobotany data example

NUs(ethnobotanydata)

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant<-sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name<-sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)

NUs(eb_data)

Radial bar plot of ethnobotany indices

Description

Creates a radial bar plot of ethnobotany indices in ethnobotanyR package using the ggplot2 library https://ggplot2.tidyverse.org/.

Usage

Radial_plot(data, analysis, colors = NULL, legend = "none")

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of species names respectively. The rest of the columns are the identified ethnobotany use categories. The data should be populated with counts of uses per person (should be 0 or 1 values).

analysis

is one of the quantitative ethnobotany functions from ethnobotanyR, i.e. ethnobotanyR::FCs.

colors

is the color palette to be used for the fill of the bars. The default is from the rainbow palette with the number of plants

legend

is the option for placing a legend in the radial plot (fits ggplot2 'legend.position' argument). The default is "none"

Value

Radial bar plot of chosen ethnobotany indices in ethnobotanyR package.

Warning

Identification for informants and species must be listed by the names 'informant' and 'sp_name' respectively in the data set. The rest of the columns should all represent separate identified ethnobotany use categories. These data should be populated with counts of uses per informant (should be 0 or 1 values).

References

Wickham, Hadley. “Reshaping Data with the Reshape Package.” Journal of Statistical Software 21, no. 12 (2007): 1–20.

Wickham, Hadley. ggplot2: Elegant Graphics for Data Analysis. Springer, 2016.

Examples

#Use built-in ethnobotany data example and Frequency of Citation function FCs()

Radial_plot(ethnobotanydata, analysis = FCs)

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant <- sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name <- sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)
 
Radial_plot(data = eb_data, analysis = URs, legend = "none")

Relative Frequency of Citation (RFC)

Description

Calculates the relative frequency of citation (RFC) per species published by Pardo-de-Santayana (2003).

Usage

RFCs(data)

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of species names respectively. The rest of the columns are the identified ethnobotany use categories. The data should be populated with counts of uses per person (should be 0 or 1 values).

Value

Data frame of species and relative frequency of citation (RFC) values.

Warning

Identification for informants and species must be listed by the names 'informant' and 'sp_name' respectively in the data set. The rest of the columns should all represent separate identified ethnobotany use categories. These data should be populated with counts of uses per informant (should be 0 or 1 values).

References

Tardio, Javier, and Manuel Pardo-de-Santayana. 2008. “Cultural Importance Indices: A Comparative Analysis Based on the Useful Wild Plants of Southern Cantabria (Northern Spain) 1.” Economic Botany 62 (1): 24–39.

Examples

#Use built-in ethnobotany data example
RFCs(ethnobotanydata)

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant <- sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name <- sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)

RFCs(eb_data)

Relative Importance index (RI)

Description

Calculates the relative importance index (RI) per species, published by Pardo-de-Santayana (2003).

Usage

RIs(data)

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of species names respectively. The rest of the columns are the identified ethnobotany use categories. The data should be populated with counts of uses per person (should be 0 or 1 values).

Value

Data frame of species and relative importance index (RI) values.

Warning

Identification for informants and species must be listed by the names 'informant' and 'sp_name' respectively in the data set. The rest of the columns should all represent separate identified ethnobotany use categories. These data should be populated with counts of uses per informant (should be 0 or 1 values).

References

Tardio, Javier, and Manuel Pardo-de-Santayana. 2008. “Cultural Importance Indices: A Comparative Analysis Based on the Useful Wild Plants of Southern Cantabria (Northern Spain) 1.” Economic Botany 62 (1): 24–39.

Examples

#Use built-in ethnobotany data example

RIs(ethnobotanydata)

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant <- sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name <- sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)

RIs(eb_data)

Use Value (UV) index per species

Description

Calculates the simplified use value (UV) index for each species in the data set (see Albuquerque et al. 2006). This is calculated the same as the CIs function.

Usage

simple_UVs(data)

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of species names respectively. The rest of the columns are the identified ethnobotany use categories. The data should be populated with counts of uses per person (should be 0 or 1 values).

Value

Data frame of species and simplified use value (UV) index values.

Warning

Identification for informants and species must be listed by the names 'informant' and 'sp_name' respectively in the data set. The rest of the columns should all represent separate identified ethnobotany use categories. These data should be populated with counts of uses per informant (should be 0 or 1 values).

References

Albuquerque, Ulysses P., Reinaldo FP Lucena, Julio M.Monteiro, Alissandra TN Florentino, and Cecilia de Fatima CBR Almeida. 2006. “Evaluating Two Quantitative Ethnobotanical Techniques.” Ethnobotany Research and Applications 4: 51–60.

Examples

#Use built-in ethnobotany data example
simple_UVs(ethnobotanydata)

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant <- sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name <- sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)

simple_UVs(eb_data)

Use Report (UR)

Description

Calculates the use reports (UR) per species, a common metric for ethnobotany studies.

Usage

URs(data)

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of species names respectively. The rest of the columns are the identified ethnobotany use categories. The data should be populated with counts of uses per person (should be 0 or 1 values).

Value

Data frame of species and use reports (UR) values.

Warning

Identification for informants and species must be listed by the names 'informant' and 'sp_name' respectively in the data set. The rest of the columns should all represent separate identified ethnobotany use categories. These data should be populated with counts of uses per informant (should be 0 or 1 values).

References

Prance, G. T., W. Balee, B. M. Boom, and R. L. Carneiro. 1987. “Quantitative Ethnobotany and the Case for Conservation in Amazonia.” Conservation Biology 1 (4): 296–310.

Whitney, Cory W., J. Gebauer, and M. Anderson. “A Survey of Wild Collection and Cultivation of Indigenous Species in Iceland.” Human Ecology 40, no. 5 (2012): 781–87. doi:10.1007/s10745-012-9517-0

Examples

#Use built-in ethnobotany data example
URs(ethnobotanydata)

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10, sample(0:1, 20, rep = TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant <- sample(c('User_1', 'User_2', 'User_3'), 20, replace = TRUE)
eb_data$sp_name <- sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace = TRUE)

URs(eb_data)

Sum of all Use Reports (UR) for all species

Description

Calculates the sum of all ethnobotany use reports (UR) for all species, a common metric for ethnobotany studies.

Usage

URsum(data)

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of species names respectively. The rest of the columns are the identified ethnobotany use categories. The data should be populated with counts of uses per person (should be 0 or 1 values).

Value

Single value sum of all ethnobotany use reports (UR) for all species in the data.

Warning

Identification for informants and species must be listed by the names 'informant' and 'sp_name' respectively in the data set. The rest of the columns should all represent separate identified ethnobotany use categories. These data should be populated with counts of uses per informant (should be 0 or 1 values).

References

Prance, G. T., W. Balee, B. M. Boom, and R. L. Carneiro. 1987. “Quantitative Ethnobotany and the Case for Conservation in Amazonia.” Conservation Biology 1 (4): 296–310.

Examples

#Use built-in ethnobotany data example
URsum(ethnobotanydata)

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant <- sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name <- sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)

URsum(eb_data)

Use Value (UV) index per species

Description

Calculates the use value (UV) index for each species in the data set (see Tardio and Pardo-de-Santayana 2008). This is calculated the same as the CIs function.

Usage

UVs(data)

Arguments

data

is an ethnobotany data set with column 1 'informant' and 2 'sp_name' as row identifiers of informants and of species names respectively. The rest of the columns are the identified ethnobotany use categories. The data should be populated with counts of uses per person (should be 0 or 1 values).

Value

Data frame of species and use value (UV) index results.

Warning

Identification for informants and species must be listed by the names 'informant' and 'sp_name' respectively in the data set. The rest of the columns should all represent separate identified ethnobotany use categories. These data should be populated with counts of uses per informant (should be 0 or 1 values).

References

Tardio, Javier, and Manuel Pardo-de-Santayana. “Cultural Importance Indices: A Comparative Analysis Based on the Useful Wild Plants of Southern Cantabria (Northern Spain)1.” Economic Botany 62, no. 1 (May 2008): 24–39. doi:10.1007/s12231-007-9004-5

Examples

#Use built-in ethnobotany data example
UVs(ethnobotanydata)

#Generate random dataset of three informants uses for four species

eb_data <- data.frame(replicate(10,sample(0:1,20,rep=TRUE)))
names(eb_data) <- gsub(x = names(eb_data), pattern = "X", replacement = "Use_")  
eb_data$informant<-sample(c('User_1', 'User_2', 'User_3'), 20, replace=TRUE)
eb_data$sp_name<-sample(c('sp_1', 'sp_2', 'sp_3', 'sp_4'), 20, replace=TRUE)

UVs(eb_data)